

Tristan Shores

ECE478

Sunday, November 5, 2012

Search Strategy Exploration

SCOPE OF ASSIGNMENT

Two independent simulated search-space challenges were explored:

A. Identifying unknown molecular compounds by their atomic mass. A knowledge of chemistry

was used to determine the possible combinations of elements whose individual mass adds up to

the compound’s atomic mass.

B. Discovering the shortest path from a start point to an endpoint on the first floors of the Maseeh

Building and Cramer Hall.

Each challenge will be discussed separately below.

IDENTIFICATION OF A MOLECULAR COMPOUND

Introduction

An expert system (standalone C# program) was implemented to determine the possible combinations of

elements whose individual mass makes up a compound’s atomic mass. Heuristics, based on highly

simplified rules for covalent/ionic bonding, were applied on top of breadth-first, depth-first, and iterative

depth-first searches to narrow search scope by limiting generation of child nodes.

Following an in-class presentation of the expert system the following modifications were made:

1. Final solutions were formatted into chemical symbols using Hill notation.

2. A database of common chemical compounds was used to indicate which of the final solutions

was known. However, that database was not used to limit the candidate set because that would

conflict with one of the goals of the expert system: to identify unknown and/or unstable

compounds, which may exist under atypical temperature/pressure conditions.

Search Path Strategies

The program allows one of three possible search path strategies to be selected: breadth-first, depth-first,

and iterative depth-first. Elements from the periodic table comprise a base set of 65 elements whose

various combinations form numerous compounds that exhibit a target atomic mass. The size of the

search space with search depth (D) is 65
D
, where D also indicates the number of compound elements at

that depth. Thus the size of the search space that includes vinegar (C2H4O2) is 73
8
 (≈10

15
). Given the

exponential magnitude of the search space a stringent selection criteria (by application of heuristics) is

needed to aggressively limit child node candidates. Nevertheless, the program can generate thousands of

theoretically possible solutions in a case where the target atomic mass exceeds 100 and the search depth

exceeds 5 levels. Since the search space expands exponentially with depth, a search depth limit

condition (for each search strategy) was used to restrict the search space.

Breadth-First Search:

The breadth-first search path strategy fully searches each level of the search space before proceeding to

the next level. This laterally priority search strategy is suitable when an exhaustive search is required to

identify every possible solution that meets the search criteria, or where the solution is located at a

shallow node depth.

The program code for the breadth-first search is shown below.

Depth-First Search:

The depth-first search path strategy explores a continuous deepening search path to maximum depth

before restarting at the next top level lateral node. This depth prioritized search strategy is suitable

where the solution is located at a deep node depth or any solution that meets the criteria is acceptable.

The program code for the depth-first search is shown below.

Iterative Depth-First Search:

The iterative depth-first search path strategy explores iteratively deepening depth-first search paths for

each lateral top-level node. The search to a specific node depth is performed exhaustively for successive

top level nodes before the next iteration with a deeper depth begins. This search strategy is suitable

where the solution is located at an unknown node depth or any solution that meets the criteria is

acceptable.

The program code for the depth-first search is shown below.

Heuristics Used for Selection of Child Candidates

A child node (Cc) is generated from a parent compound/element (C1) reacted with one of the elements

(C2) from the periodic table when ALL of the following apply:

1. (Atomic mass Cc) ≤ (target atomic mass ± small tolerance).

2. (Total elements that comprise C1 and C2) ≤ (target element count)

3. A valid covalent/ionic bond occurs between C1 and C2. Valid bond conditions are:

a. For a covalent bond:

i. Both C1 and C2 contain only non-metal elements.

ii. ((Atomic mass Cc < target atomic mass) AND net charge is not zero) OR

((Atomic mass Cc = target atomic mass) AND net charge is zero).

Note that the net charge is determined by successively attempting to form a

single/double/triple covalent bond between C1 and C2. That bond is informed by the

number of valence electrons in the outer shell of C1 and C2. Since a single covalent bond

between C1 and C2 forms a different compound than a double/triple covalent bond, Cc

can actually be a set of compounds.

b. For an ionic bond:

i. C1 solely comprises non-metals and C2 is a metal. Let the result be C3, OR

C3 and the C2 element repeated.

ii. ((Atomic mass Cc) = (target atomic mass) AND net charge is zero) OR

((Atomic mass Cc = target atomic mass) AND net charge is zero).

The resulting child node(s) were placed in one of two lists:

1. In-progress list: when Cc net charge is non-zero.

2. Completed List: when Cc net charge is zero (i.e. fully formed compound with the target atomic

mass).

The program code for the heuristics as described above is shown below.

Expert System Search Results

A search for a target atomic mass of 30 with a limit to the maximum search depth of 4 is shown below.

This maximum search depth limits the maximum number of elements in the solution set to 4. The output

for each search strategy is shown below.

Note that all three search strategies produced the same set of unique solutions, however the iterative

depth search has two duplicates due to iterative traversing of the same search space. Note that the

ordering of the search results predictably varies according to the particular searching strategy.

Breadth-first results:

Depth-first results:

Iterative depth-first results:

Notable search solutions:

 Formaldehyde (CH2O): One of the covalent bonding predictions (O||C|H|H) matches its known

form, which is shown below:

 Lithium Oxide (Li2O): The ionic bonding prediction (O-Li-Li) matches its known form. The 1

extra valence electrons in each of the Lithium atoms are ionically shared with the Oxygen atom

which lacks 2 valence electrons.

 Beryllium Carbide (Be2C) : The ionic bonding prediction (C-Be-Be) matches its known form.

The 2 extra valence electrons in each of the Beryllium atoms are ionically shared with the

Carbon atom which lacks 4 valence electrons.

 Diazene (H2N2): Conventionally this compound is written as N2H2, which is an exception to the

Hill notation for chemical formulas. Because of this inconsistency, the result was not flagged as

known. One of the covalent bonding predictions (H|N||N|H) matches its known bond, which is

shown below:

Conclusion

In this expert program, every search path was determined by breadth-first, depth-first, or iterative depth-

first search strategies. Although heuristics was heavily used to impose restrictions on the generation of

child nodes, heuristics was not used to decide the search path. Breadth-first, depth-first, and iterative

depth-first search strategies are purely passive search strategies.

SHORTEST PATH THROUGH MAZE

Introduction

A path finding program was implemented to explore the performance of the Dijkstra (a simplified

version) and A* search algorithms. Unlike breadth-first, depth-first, and iterative depth-first searches,

the Dijkstra and A* searches are active search strategies (i.e. employ heuristics).

Search Path Strategies

At any current node, possible next nodes (child/candidate nodes) are all the adjacent nodes that are not

off-map or coincident with maze walls. Dijkstra and A* search algorithms use different heuristics to

select the next node in the search path.

Dijkstra Algorithm

Dijkstra’s algorithm selects a next node from a candidate set of possible next nodes based on a candidate

node’s distance from the search start point. The candidate node with the shortest linear distance from the

start point is selected. Thus in an open space search, nodes in all the different directions are explored

uniformly in an expanding circular manner. This search strategy is algebraically expressed as:

f(n) = g(n). g(n) measures the unweighted negative distance of any node n to the start node, and f(n) is

the fitness function. The shortest distance is less negative and therefore fitter.

The program code to implement a simplified Dijkstra algorithm is shown below.

A* Algorithm

The A* algorithm selects a next node from a candidate set of possible next nodes based on a candidate

node’s distance from both the search start and end points. The candidate node with the shortest linear

distance from the start point plus the weighted shortest linear distance from the endpoint is selected. A

weight > 1 (3 is ideal) is required in order to keep the search more focused on the endpoint than the start

point. This search strategy is algebraically expressed as:

f(n) = g(n) + h(n). g(n) is the unweighted the negative distance of any node n to the start node, h(n) is

the weighted negative distance of any node n to the end node, and f(n) is the fitness function.

The program code to implement the A* algorithm is shown below.

Maze Design

The Maseeh building 1st floor and Cramer Hall 1
st
 floor plans were used to auto-generate mazes. Sealed

areas include stairwells, bathrooms, utility areas, and outdoors.

Search Results

Example searches using Dijkstra’s algorithm and the A* algorithm are shown below.

Simulated Maseeh Building 1st Floor, navigated using Dijkstra’s algorithm:

Simulated Maseeh Building 1st Floor, navigated using A* algorithm:

Simulated Cramer Hall 1st Floor, navigated using Dijkstra’s algorithm:

Simulated Cramer Hall 1st Floor, navigated using A* algorithm:

Yellow areas indicate previously traversed nodes (closed list). Light blue areas indicate non-traversed

potential candidate nodes (open list). The dark orange line indicates the discovered path from start to

finish points (result list).

Following is an analysis of the search results for the Maseeh Building 1
st
 Floor search:

Maseeh Building
Total Searchable

Nodes (NS)

Total Traversed

Nodes (NT)

Search Path

Node Length
Ratio NS/NT

Dijkstra 20228 18514 233 91.5%

A* 20228 2031 220 10.0%

Following is an analysis of the search results for the Cramer Hall 1
st
 Floor search:

Cramer Hall
Total Searchable

Nodes (NS)

Total Traversed

Nodes (NT)

Search Path

Node Length
Ratio NS/NT

Dijkstra 11947 11135 322 93.2%

A* 11947 1364 311 11.4%

CONCLUSION

Both the A* and Dijkstra algorithms discovered the endpoint, however the A* algorithm did it with less

searching and with far more efficiency and speed. The ratio of the actual-searched space vs. total

searchable space is a good indication of each algorithm’s effectiveness. The A* algorithm is only

implementable if the distance to the endpoint can be determined. This extra information allows the A*

algorithm to be a more informed and therefore be a superior algorithm.

Simulations with a denser obstacle dense environment (first floor areas filled with obstacles)

significantly reduced the performance gap between the two algorithms. This can mainly be attributed to

the reduced total traversed nodes for the Dijkstra algorithm.

In this application, every search path was determined by heuristics, except in rare cases where two child

nodes had equal suitability. Heuristics had a very limited role in the generation of child nodes, just to

disallow child nodes off-map or coincident with maze walls. Dijkstra and A* search strategies are both

active search strategies in contrast to breadth-first, depth-first, and iterative depth-first searches.

REFERENCES

A* search algorithm. (n.d.). In Wikipedia. Retrieved November 4, 2012, from

http://en.wikipedia.org/wiki/A*_search_algorithm

American Chemical Society. (n.d.). STNEasy: Formatting Chemical Formulas. Retrieved November 4,

2010, from http://www.cas.org/training/stneasytips/subinforformula1.html

Braunl, T. (2008). Embedded Robotics. Berlin, Heidelberg: Springer-Verlag.

Breadth-first search. (n.d.). In Wikipedia. Retrieved November 2, 2012, from

http://en.wikipedia.org/wiki/Breadth-first_search

WebQC.Org Chemical Portal. (n.d.). Calculate molecular weight - molar mass calculator. Retrieved

November 1, 2012, from http://www.webqc.org/mmcalc.php

Depth-first search. (n.d.). In Wikipedia. Retrieved November 2, 2012, from

http://en.wikipedia.org/wiki/Depth-first_search

Dictionary of chemical formulas. (n.d.). In Wikipedia. Retrieved November 3, 2012, from

http://en.wikipedia.org/wiki/Dictionary_of_chemical_formulas

Dijkstra's algorithm. (n.d.). In Wikipedia. Retrieved November 4, 2012, from

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Iterative deepening depth-first search. (n.d.). In Wikipedia. Retrieved November 4, 2012, from

http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

Luger, G. (2009). Artificial Intelligence. Boston, MA: Pearson.

Portland State University. (2010). First Floor Plan Engineering Building. Retrieved November 5, 2012,

from http://www.fap.pdx.edu/floorplans/docs/EB_f1317916752.pdf

http://www.webqc.org/mmcalc.php

